Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232139

RESUMO

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Camundongos Knockout , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Terapia de Reposição de Enzimas/métodos
2.
Cell Rep ; 40(1): 111041, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793618

RESUMO

Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.


Assuntos
Glicogênio Sintase , Glicogenólise , Glicoproteínas , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos
3.
Nature ; 559(7715): 575-579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995856

RESUMO

Mitochondrial calcium uptake is critical for regulating ATP production, intracellular calcium signalling, and cell death. This uptake is mediated by a highly selective calcium channel called the mitochondrial calcium uniporter (MCU). Here, we determined the structures of the pore-forming MCU proteins from two fungi by X-ray crystallography and single-particle cryo-electron microscopy. The stoichiometry, overall architecture, and individual subunit structure differed markedly from those described in the recent nuclear magnetic resonance structure of Caenorhabditis elegans MCU. We observed a dimer-of-dimer architecture across species and chemical environments, which was corroborated by biochemical experiments. Structural analyses and functional characterization uncovered the roles of key residues in the pore. These results reveal a new ion channel architecture, provide insights into calcium coordination, selectivity and conduction, and establish a structural framework for understanding the mechanism of mitochondrial calcium uniporter function.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Fusarium/química , Metarhizium/química , Animais , Caenorhabditis elegans/química , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cristalografia por Raios X , Ativação do Canal Iônico , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Solubilidade
4.
Cell ; 169(1): 96-107.e12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340354

RESUMO

Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Bactérias/classificação , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
5.
Mol Biol Cell ; 23(17): 3407-19, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809629

RESUMO

The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures.


Assuntos
Movimento Celular , Dictyostelium/fisiologia , Pinocitose , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Linhagem Celular , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/ultraestrutura , Técnicas de Inativação de Genes , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura
6.
Eukaryot Cell ; 11(4): 401-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307974

RESUMO

The ampA gene plays a role in Dictyostelium discoideum cell migration. Loss of ampA function results in reduced ability of growing cells to migrate to folic acid and causes small plaques on bacterial lawns, while overexpression of AmpA results in a rapid-migration phenotype and correspondingly larger plaques than seen with wild-type cells. To help understand how the ampA gene functions, second-site suppressors were created by restriction enzyme-mediated integration (REMI) mutagenesis. These mutants were selected for their ability to reduce the large plaque size of the AmpA overexpresser strain. The lmbd2B gene was identified as a suppressor of an AmpA-overexpressing strain. The lmbd2B gene product belongs to the evolutionarily conserved LMBR1 protein family, some of whose known members are endocytic receptors associated with human diseases, such as anemia. In order to understand lmbd2B function, mRFP fusion proteins were created and lmbd2B knockout cell lines were established. Our findings indicate that the LMBD2B protein is found associated with endocytic cups. It colocalizes with proteins that play key roles in endocytic events and is localized to ruffles on the dorsal surfaces of growing cells. Vegetative lmbd2B-null cells display defects in cell migration. These cells have difficulty sensing the chemoattractant folic acid, as indicated by a decrease in their chemotactic index. lmbd2B-null cells also appear to have difficulty establishing a front/back orientation to facilitate migration. A role for lmbd2B in development is also suggested. Our research gives insight into the function of a previously uncharacterized branch of the LMBR1 family of proteins. We provide evidence of an LMBR1 family plasma membrane protein that associates with endocytic cups and plays a role in chemotaxis.


Assuntos
Membrana Celular/metabolismo , Quimiotaxia , Dictyostelium/citologia , Endocitose , Proteínas de Protozoários/metabolismo , Actinas/metabolismo , Estruturas da Membrana Celular/metabolismo , Polaridade Celular , Sequência Conservada , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Evolução Molecular , Mutagênese , Mutação , Fenótipo , Filogenia , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Protozoários/genética , Pseudópodes/metabolismo , Análise de Sequência de DNA , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...